Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Acta sci., Biol. sci ; 42: e46412, fev. 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1460906

ABSTRACT

The Achillea millefolium L. is a perennial herb with important antibacterial, antifungal, anti-inflammatory, antitumoral, and antioxidant properties. This research aimed to investigate the effect of shading (75%; black net) and nitrogen fertilization (0, 75 and 150 kg urea ha-1) on the nitrogen metabolism, essential oil yield and antimicrobial activity of A.millefolium at vegetative- and reproductive-stage. The evaluated parameters varied depending on the organ and the phenological stage of the plant considered. Overall, our findings indicated that shading decreased nitrogen assimilation. Decreased activities of nitrate reductase and glutamine synthetase were observed on shaded plants during reproductive and vegetative stages, respectively. Nitrate and total amino acid levels increased in shaded plants at the vegetative stage. Regarding nitrogen supply, the improved nitrogen metabolism and essential oil yield values were accompanied by intermediate concentrations of urea (75 kg ha-1). Plants fertilized with 75 kg urea ha-1 produced the highest amino acids concentration (vegetative stage), ammonium concentration (vegetative stage) and essential oil yield (reproductive stage). Shading or nitrogen supply did not influence the microbial activity of A. millefolium essential oil.However, the essential oil of leaves and flowers were highly effective against fungi and bacteria, especially gram-positive bacteria. In conclusion, the current study showed that full light and 75 kg urea ha-1 enhanced the nitrogen metabolism of A. millefolium in both vegetative and reproductive stages.


Subject(s)
Achillea/metabolism , Achillea/microbiology , Achillea/chemistry , Composting , Nitrogen Compounds/metabolism , Nitrogen Compounds/chemistry , Anti-Infective Agents , Shadowing Technique, Histology
2.
Ciênc. rural (Online) ; 50(4): e20180911, 2020. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1089571

ABSTRACT

ABSTRACT: Herbicide application is an effective weed control method for mitigating crop yield loss; however, herbicide overuse can cause toxicity in non-target plants. The present study evaluated the effects of glufosinate at recommended dose for agricultural application (0.45 kg ha-1) and at overuse dose (0.90 kg ha-1) glufosinate application on photosynthetic performance and nitrogen assimilation of the rapeseed varieties D148 and Zhongshuang 11 (ZS11). Both glufosinate concentrations significantly decreased the content of chlorophyll and nitrogenous compounds, except free proline, and the activity of glutamine synthetase and glutamate synthase, and increased the activity of glutamic acid dehydrogenase in both varieties. When the concentration of glyphosate was 0.45kg ha-1, the nitrogen assimilation of the two varieties decreased, which indicated that the recommended dosage inhibited the nitrogen assimilation of the two varieties; however, the increase of net photosynthetic rate of D148 and the decrease of that of ZS11 mean that D148 is more tolerant to the recommended dose of glyphosate than ZS11. The 0.90 kg ha-1 dosage was toxic to both rapeseed varieties. Overall, our results indicated that herbicide overuse inhibited the photosynthetic rate and nitrogen assimilation in rapeseed seedlings, and it is essential to apply a suitable glufosinate dose based on the variety grown to minimize adverse effects on crops and environment.


RESUMO: A aplicação de herbicidas é um método eficaz de controle de ervas daninhas para mitigar a perda de produtividade das culturas. No entanto, o uso excessivo de herbicidas pode causar toxicidade em plantas não alvo. O presente estudo avaliou os efeitos da dose recomendada para aplicação agrícola (0.45 kg ha-1) e dose excessiva (0.90 kg ha-1) de glufosinato no desempenho fotossintético e assimilação de nitrogênio das variedades de colza D148 e Zhongshuang 11 (ZS11). Ambas as concentrações de glutamato diminuíram significativamente o teor de clorofila e compostos azotados, exceto a prolina livre, e a atividade de síntese da glutamina e de síntese de glutamato, e aumentaram a atividade de desidrogenase do ácido glutâmico em ambas as variedades. Quando a concentração de glifosato foi 0.45 kg ha-1, a assimilação de azoto das duas variedades diminuiu, o que indicou que a dosagem recomendada de glifosato inibiu a assimilação de azoto das duas variedades de colza. Entretanto, a taxa fotosintética líquida do D148 aumentou enquanto o do ZS11 diminuiu, o que significa que o D148 é mais tolerante a dose recomendada de glifosato do que o ZS11. A dose de 0.90 kg ha-1 de glifosato foi prejudicial para as mudas de duas variedades de colza. Em geral, os nossos resultados indicam que o uso excessivo de glufosinato inibe a taxa fotossintética e a assimilação de nitrogênio em mudas de colza, sendo essencial aplicar uma dose adequada deste herbicida com base na variedade cultivada para minimizar os efeitos adversos nas culturas e no meio ambiente.

3.
Genet. mol. biol ; 30(3,suppl): 810-818, 2007. ilus, tab
Article in English | LILACS | ID: lil-467259

ABSTRACT

Assimilation of nitrate and ammonium are vital procedures for plant development and growth. From these primary paths of inorganic nitrogen assimilation, this metabolism integrates diverse paths for biosynthesis of macromolecules, such as amino acids and nucleotides, and the central intermediate metabolism, like carbon metabolism and photorespiration. This paper reports research performed in the CitEST (Citrus Expressed Sequence Tag) database for the main genes involved in nitrogen metabolism and those previously described in other organisms. The results show that a complete cluster of genes involved in the assimilation of nitrogen and the metabolisms of glutamine, glutamate, aspartate and asparagine can be found in the CitEST data. The main enzymes found were nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthetase (GOGAT), glutamate dehydrogenase (GDH), aspartate aminotransferase (AspAT) and asparagine synthetase (AS). The different enzymes involved in this metabolism have been shown to be highly conserved among the Citrus and Poncirus species. This work serves as a guide for future functional analysis of these enzymes in citrus.

SELECTION OF CITATIONS
SEARCH DETAIL